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Abstract: This paper addresses the problem of novel view synthesis using Neural Radiance Fields (NeRF) for scenes
with dynamic illumination. NeRF training utilizes photometric consistency loss that is pixel-wise consistency
between a set of scene images and intensity values rendered by NeRF. For reflective surfaces, image inten-
sity depends on viewing angle and this effect is taken into account by using ray direction as NeRF input. For
scenes with dynamic illumination, image intensity depends not only on position and viewing direction but also
on time. We show that this factor affects NeRF training with standard photometric loss function effectively
decreasing quality of both image and depth rendering. To cope with this problem, we propose to add time as
additional NeRF input. Experiments on ScanNet dataset demonstrate that NeRF with modified input outper-
forms original model version and renders more consistent 3D structures. Results of this study could be used
to improve quality of training data augmentation for depth prediction models (e.g. depth-from-stereo models)
for scenes with non-static illumination.

1 INTRODUCTION

3D scene reconstruction is a long-standing problem
in computer vision consisting in understanding 3D
structure of a scene given its 2D images. It is ap-
plied to diverse domains, including Augmented Real-
ity (AR) and Virtual Reality (VR). For example, 3D
scene reconstruction enables occlusions and collision
processing between augmented content and the phys-
ical world for natural, seamless, and realistic inter-
actions in AR. Multiple methods and tools, includ-
ing Markov Random Fields [1], local stereo matching
algorithms [2, 3] and deep neural networks [4], are
applied to solve 3D scene reconstruction task. The
complexity of this task is due to the need for simulta-
neous consistent reconstruction of global scene struc-
tures and their local details that require massive com-
putations and a large amount of data. Availability of
accurate and reliable data is crucial in deep neural net-
works training.

Manual data collection with further annotation
and synthetic data generation are common approaches

for training datasets acquisition. The process of man-
ual collection is very time-consuming and expensive: 
one need to collect GT depth data, image data along 
with accurate camera poses. Consequently, this pro-
cess also requires additional specific equipment, for 
example, depth cameras. Fully synthetic data cannot 
completely replace real data in neural networks train-
ing. In order to guarantee reasonable performance in 
real operation conditions, models obtained after fit-
ting on such fully synthetic data should be finetuned 
on real data from the target domain [5].

One of the recent advances in view synthesis with 
reliable results is Neural Radiance Fields (NeRF) [6]. 
It is an MLP (multilayer perceptron) network that 
can generate novel views of the scene given a lim-
ited amount of pictures of the scene with correspond-
ing camera poses during the training process. NeRF 
optimizes underlying continuous volumetric function 
using a sparse set of input views [6]. This method 
may be used for new data generation and augment-
ing training datasets for depth prediction neural net-
works. In, for example, [7] authors uses synthetic im-
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ages generated by NeRF to solve localization tasks.
They demonstrate that additional synthetic data im-
proves the accuracy of regression of the camera’s po-
sition. One of the advantages of this MLP network is
that it can synthesize not only RGB images but also
depth maps that are important for depth estimation
networks. And as mentioned before, 3D scene recon-
struction should be close to the original environmen-
tal structures, so it requires reliable depth maps.

During training NeRF optimizes photometric loss
function that is equal to pixel-wise difference be-
tween intensities of original and generated images.
However, this loss function has its limitations in dy-
namic scenes and scenes with illumination changes:
such data violate the brightness consistency assump-
tion important for such photometric loss functions due
to its dependence on image intensity. Discussed loss
function is also a common loss function that is min-
imized in depth estimation networks that are trained
in unsupervised mode (e.g. in [8, 9]). Authors of [10]
analyze the problem of using photometric consistency
loss functions for datasets with bad or dynamic illu-
mination. They demonstrate that standard photomet-
ric loss function fails for such data.

The main contribution of this work is using a time
variable as a sequential image index added to the
NeRF model input parameters for static scenes but
with dynamic illumination. This modification consid-
ers some illumination changes across all datasets and
allows their compensation. To evaluate its influence
on scene reconstruction, the depth generation quality
of NeRF was measured by calculating relative depth
errors on two ScanNet data [11] scenes with some
changes of illumination and with the presence of re-
flections.

The rest of this paper is organized as follows.
Section 2 reviews related works in generating image
and depth data and scene reconstruction with illumi-
nation changes. Section 3 discusses the problem of
NeRF training for scenes with dynamic illumination
and proposes modifications of NeRF architecture and
loss function. Section 4 discusses experiments that
demonstrate the effect of the proposed modifications.
Finally, Section 5 summarizes main article’s contri-
butions and future research directions.

2 RELATED WORK

Having a certain number of images of the scene cap-
tured from different positions, NeRF reconstructs its
entire 3D structure and enables the synthesis of novel
views. This method is not the first to address this
problem. Other variants of generating novel views

include, for example, 3D grid-based optimization of
the representation of the scene [12] or methods opti-
mized by neural networks that map XY Z coordinates
into sign distance functions (SDF) [13, 14]. How-
ever, due to their computational complexity, these
methods require high-quality ground truth 3D data
and have low-scaled capability focused on generating
high-resolution images. On the contrary, NeRF opti-
mizes the representation of the scene in the form of a
continuous differentiable function that allows training
model in an end-to-end manner.

However, the original NeRF model [6] also has
drawbacks due to, for example, time consuming and
requirement of accurate camera poses. Authors of
BARF model [15] mitigate exact camera poses re-
quirement by adding them to the optimization pro-
cess. Both NeRF and BARF models have common
limitation of supporting only a single scene. They
both fail to generalize other environments and allow
image synthesis only for the specific scene used in the
training process. There are some NeRF models such
as [16, 17] that overcome the mentioned problem by
using MVS-based (multi-view stereo) approaches.

In general, models that are based on NeRF assume
that scenes are static, but it is not always true. Neural
Scene Flow Fields (NSFF) [18] is one of the NeRF
representatives that enables the optimization for dy-
namic scenes. The authors of this model modified
the basic representation of the scene as NeRF, con-
sidering the dynamic conditions of the environment.
As a result, obtained new representation of the scene,
NSFF, simulates the dynamic scene as a time variable
continuous function of the environment representa-
tion, geometry, and movement of the 3D scene. Such
an approach enables the interpolation of changes both
in space and time. In contrast to this work, in this
paper we consider time dependence NeRF for static
scenes with dynamic illumination.

3 METHODOLOGY

3.1 NeRF Training Loss

NeRF has recently gained success in generating novel
views for complex scenes [6]. It represents a scene
using the fully-connected deep network. The input to
the model is a 5D vector-valued function which argu-
ments are spatial location (x, y, z) and viewing direc-
tion (θ, φ). The output is a volume density σ and RGB
color c⃗. The model can be written as [6]:

Fw : (⃗x, d⃗)→ (⃗c,σ) (1)
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To train NeRF, we need a dataset with RGB im-
ages of the scene, camera poses, and camera intrinsic
parameters. The training process involves rendering
corresponding views of the scene and minimization
of the photometric loss between observed and synthe-
sized images.

The rendering process is illustrated in Figure 1.
First, we march camera rays through each pixel of the
image and sample some points. Then, these points
are fed to the MLP network that predicts color and
density for each of them. At the last stage, classical
volumetric rendering [19] is used to aggregate all col-
ors and densities for each sampled point and get the
final result for the pixel.

During training, NeRF minimizes photometric
loss function. Generally, it uses two networks: coarse
and fine [6]. But for simplicity in our work, we only
consider the first coarse subnetwork. Given M images
(I1, ..., IM), the goal of NeRF training is optimize the
following synthesis-based objective:

LF =
M

∑
i=1

∑
u
||Îi(u;w)− Ii(u)||22, (2)

where w is the network parameters that also depend
on the view directions, u denotes pixels coordinates,
Î(u;w) is the synthesized RGB value at pixel u.

3.2 Photometric Loss Limitations

One of the characteristics of real data is dynamic illu-
mination. Usually, existing datasets have static scenes
without changes of lighting. Illumination changes
may be caused by some reasons e.g., from external
sources such as the sun or from car lights. Also,
these changes may be due to camera exposures. NeRF
models take into account positions and input ray di-
rections that can compensate effects caused by re-
flective surfaces but they do not consider time vari-
able. Time dependence is important for scenes with
dynamic illumination. Consequently, standard NeRF
models may fail in rendering a correct color for
images from such datasets. Also, as it shown in
[10], depth estimation networks that use photometric-
consistency loss functions fail in recovering 3D scene
structure for datasets with bad or dynamic illumina-
tion. Given this, NeRF-based models may have the
same problems as they also use photometric loss func-
tion.

3.3 Model Modifications

3.3.1 Depth Loss

The original NeRF model and all its modifications
predict color along with the density σ that can be in-

Figure 1: NeRF rendering process [6].

terpreted as an opacity of the objects. Using the ob-
tained density, we can calculate distances to objects.
During NeRF training, the predicted depth maps are
not further optimized. This leads to the incorrectly
predicted distances to the objects and, thus, low qual-
ity of the 3D scene reconstruction. There are some
datasets that have (incomplete) depth maps that can
be used to improve NeRF quality. To do this, we pro-
pose to add an additional loss function, which is de-
fined as the MSE error between the GT (ground truth)
values of the distance maps and the predicted ones:

LD = ||D− D̂||22, (3)

where D - GT depth maps, D̂ - predicted depth maps.
The overall loss function takes the following form:

L =
M

∑
i=1

∑
u
||Îi(u;w)− Ii(u)||22 + ||D− D̂||22, (4)

where M denotes number of images, u is pixel coordi-
nates, Îi(u;w) is synthesized RGB color in pixel u for
image i, Ii(u) is GT RGB color in pixel u for image
i, D is GT depth maps, D̂ is predicted depth maps by
NeRF.

3.3.2 Time as Additional Variable of NeRF
Model

In order to model dynamic illumination, we propose
to use time t as supplemental input variable to the net-
work. Each of the elements of t corresponds to the
sequential index of the input image for NeRF train-
ing. Time and images indices have linear dependence.
This is due to the fact that the processed dataset is
a video sequence with a fixed value of frames per
second (fps). Variable t is additionally normalized
to the [0,1] interval, and positional encoding is ap-
plied. This variable can be added in two variants to
the model. The first one corresponds to time t added
with 3D coordinates denoted as (⃗x, t) and the second
one is time t added with input rays directions denoted
as (d⃗, t).

The modified NeRF model is defined as:

Fw : (⃗x, d⃗, t)→ (⃗c,σ) (5)
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Figure 2: Qualitative comparisons for scene0000 00. First line corresponds to RGB images and second line to depth maps.
Adding time to the NeRF model improve both quality of RGB images and depth maps as shown in highlighted regions.

4 EXPERIMENTS

4.1 Dataset Description

ScanNet [11] is an RGB-D dataset that consists of
2.5 million images collected in more than 1500 differ-
ent indoor locations. Camera intrinsics and extrinsics
(camera poses) are provided for each scene. In this
paper, we use two ScanNet scenes: scene0000 00 and
scene0005 01. For these scenes illumination changes
with viewing angle because of reflective surfaces and
also with time. Time dynamics is most probably
caused by the camera auto exposure. Scene0000 00
consists of 5577 images and scene0005 01 consists of
1449 images. For experiments we use only a part of
the scene0000 00 that contains 500 images. We select
only a part that contains illumination changes.

4.2 Experiment Description. Metrics

To demonstrate the effect of our proposed modifica-
tions we conducted the following experiments:

1) Train original NeRF model.

2) Train original NeRF model with added loss
function.

3) Train original NeRF model with both added
depth loss function and time variable.

Training configuration including train/validation
split, number of sampled points, number of random
rays is the same as in [15].

We evaluate our models using two metrics: MAE
(mean absolute error) and MARE (mean absolute rel-
ative error). We measure errors between GT depth
and predicted one.

MAE can be calculated as:

MAE =
1
N

1
n

1
m

N

∑
k=1

n,m

∑
i, j

|yk,i, j)− ŷk,i, j|, (6)

where yk,i, j - GT depth value for (i, j) pixel, ŷk,i, j -
predicted depth value for (i, j) pixel, N - number of
images in the dataset, n - image height, m - image
width.

And MARE can be calculated as:

MARE =
1
N

1
n

1
m

N

∑
k=1

n,m

∑
i, j

|yk,i, j − ŷk,i, j|
yk,i, j

∗100%, (7)

where yk,i, j - GT depth value for (i, j) pixel, ŷk,i, j -
predicted depth value for (i, j) pixel, N - number of
images in the dataset, n - image height, m - image
width.

4.3 Experiment Results

The performance metrics of trained models in differ-
ent modes are shown in Table 1. For the scene0000 00
NeRF models were trained without adding depth loss
function. Base model results in low performance,
achieving 28.1% relative depth error. Adding time
variable allow us to improve the model quality by
8-11%. Qualitative results for this dataset can be
found in Figure 2. For dataset scene0005 01 we an-
alyze both modifications: depth loss and additional
time t variable. Modification with depth loss reduces
the relative depth error from 30% to 1.88%. Adding
time variable further improves quality of synthesized
color images as well as depth maps. It is especially
shown for case of adding time variable with the in-
put 3D coordinates (⃗x, t). Relative depth error in this
mode is equal to 0.93%. Qualitative results for dataset
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Figure 3: Qualitative comparisons for scene0005 01. First line corresponds to RGB images and second line to depth maps.
Adding depth loss function as well as time variable to NeRF model improve synthesis quality and allow model to better
generate thin structures of the scene (highlighted region).

scene0005 01 can be found in Figure 3. Visual com-
parison of generated image and depth data shows us 
quality improvement with our mode modifications.

Table 1: Metrics for ScanNet dataset.

Dataset Train. mode MAE MARE

scene0000 00 base model 0.686m 28.1%

scene0000 00 (d⃗,⃗t) 0.498m 20%

scene0000 00 (x⃗,⃗t) 0.429m 17.3%

scene0005 01 base model 0.577m 30%

scene0005 01 depth loss 0.03m 1.881%

scene0005 01 depth loss + (d⃗,⃗t) 0.03m 1.875%

scene0005 01 depth loss + (x⃗,⃗t) 0.015m 0.93%

5 CONCLUSIONS

In this paper, we study how dynamic illumination af-
fect quality of a scene representation by NeRF model.
Dynamic illumination can be caused by illumination
sources with power changing in time (sunlight in
cloudy weather), light sources switched on or off dur-
ing scene acquisition, or by camera automatic expo-
sure. We argue that such changes cannot be mod-
elled by standard NeRF using position and viewing
angle direction as inputs and lead to rendering qual-
ity degradation. To cope with this problem, we pro-
pose to extend NeRF input with additional time vari-
able. This idea was previously used for scenes with
dynamic objects, we demonstrate that same approach

is useful for static scenes with dynamic illumination.
Experiments on ScanNet dataset show that extend-
ing NeRF input with time variable leads to improve-
ment of quality of synthesized images (e.g. for small
structures) and to relative depth error decreasing by
10-28%. From the practical point of view, results of
this work can be used to improve quality of data aug-
mentation for training depth prediction models where
quality of both image and depth rendering is highly
important.
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